Задача измерения космических расстояний стояла перед астрономами с самых давних времен. В одной из задач мы уже обсуждали современные методы измерения расстояний до далеких галактик. Но вся эта эпопея с измерением расстояний начиналась с ближайших к нам объектов солнечной системы.
Здесь применим метод параллакса, который основывается на том, что конкретный небесный объект находится не слишком далеко, и его положение на небе зависит от того, откуда на него посмотреть. Подобным образом, кстати, работает и стереоскопическое восприятие наших глаз, с помощью которого мозг определяет примерное расстояние до объектов: левый и правый глаз видят объект под разными (хотя и близкими) углами. Зная углы и расстояния между глаз — так называемую длину базы, — можно довольно точно оценить расстояние до объекта
В геодезии такой метод измерения расстояний называется триангуляцией. Ну а в астрономии через параллаксы можно точнее всего посчитать расстояния до ближайших к нам звезд. В качестве базы в этом случае берется полуось орбиты Земли и угловое положение звезды определяется два раза с промежутком в полгода. Но с чего все это началось? Откуда мы знаем размер орбиты Земли?
Астрономическая единица (среднее расстояние от Земли до Солнца) — один из основных стандартов расстояний в космосе — была принята на вооружение после того, как Кеплером была предложена и обоснована гелиоцентрическая система, в которой Земля обращается вокруг Солнца по (почти) круговой орбите. Естественным решением было принять радиус этой орбиты за единицу измерения.
Сейчас параметры земной орбиты измерены с огромной точностью, однако тогда, в XVIII веке, астрономия уперлась в тупик. Ученые к тому времени смогли определить расстояния до многих планет в Солнечной системе, выразив их в астрономических единицах. Но само значение астрономической единицы в привычных человеку единицах (например, километрах) точно известно не было.
При этом уже был довольно точно измерен радиус Земли. Тем самым, значение базы было достоверно известно, и требовалось лишь измерение параллактического угла до любого из объектов солнечной системы, до которого было известно относительное расстояние в астрономических единицах.
Поэтому астрономы всего мира возлагали огромные надежды на прохождение Венеры по диску Солнца в 1761 и 1769 годах. Правильно организованное наблюдение этого явления потенциально позволило бы измерить параллакс Венеры относительно параллакса Солнца (точнее, их разность), и, зная радиус Земли (длину базы) узнать астрономическую единицу.
Дело в том, что с разных точек Земли прохождение Венеры по диску Солнца выглядит по разному (рис. 2). Если бы удалось измерить эти траектории в разных точках, то задача была бы решена, потому что затем можно либо найти непосредственно угловые размеры этих траекторий, либо — время прохождения, и уже из него найти требуемое. Так и получилось: в результате наблюдений, проходивших в разных точках земного шара, ученые смогли определить значение астрономической единицы с достаточно высокой точностью.
В частности, Томас Хорнсби получил значение расстояния от Земли до Солнца примерно 93 726 900 английских миль (150 838 449 км), что очень близко к истине
Источник: elementy.ru
-
-