Если вы посмотрите на любые окружающие вас объекты Вселенной, и увидите, что все они будут двигаться в сторону от вас, что вы решите? Может, что у вас есть отталкивающая сила? Или что ткань пространства расширяется? Что вы находитесь в центре произошедшего когда-то взрыва и всё разлетается в стороны от его центра? Все эти и некоторые другие варианты могут казаться разумными, но учёные почему-то всё время говорят о «расширяющейся Вселенной», будто бы другие альтернативы не годятся. Почему? Наш читатель спрашивает об этом:
Откуда нам известно, что расширяется пространство? По отношению к чему? Красное смещение разлетающихся галактик могло бы быть и в бесконечном пространстве, а не обязательно в расширяющемся.
Ответ на этот вопрос вытекает непосредственно из наблюдений за Вселенной.
Один из самых невероятных фактов, связанных с Эйнштейновской Общей теорией относительности – лидирующей теорией гравитации – заключается в том, что она связывает пространство-время и материю с энергией. Материя и энергия сообщают пространству-времени, как нужно искривиться; пространство-время говорит материи, как двигаться. Если мы узнаем, как распределена вся материя и энергия во Вселенной в какой-то момент времени, и узнаем, как они движутся, мы сможем воссоздать кривизну пространства-времени и его эволюцию в течение жизни Вселенной.
Наблюдая за галактиками Вселенной, мы видим, что на самые близкие к нам галактики больше всего влияет гравитационная динамика других соседних галактик. Млечный путь и Андромеда направляются навстречу друг другу, другие галактики местной группы в итоге также сольются с нами. Остальные галактики притягиваются в другим близлежащим массам – крупным галактикам, галактическим группам и скоплениям. В любом относительно небольшом участке пространства, размером от нескольких миллионов до десятков миллионов световых лет, массы этого пространства определяют, как именно будут двигаться галактики.
На крупных масштабах всё происходит не так. Мелкомасштабные движения, известные, как пекулярные скорости, могут достигать нескольких тысяч километров в секунду. Но они накладываются на более сильный эффект, который можно увидеть только на более крупных масштабах: чем дальше от нас галактика, тем быстрее она от нас отдаляется.
Это эмпирическое наблюдение известно, как закон Хаббла, и постулирует, что наблюдаемая скорость убегания от нас галактики пропорциональна расстоянию от неё до нас. Константа пропорциональности известна как постоянная Хаббла, и её довольно точно измерили, получив значение порядка 70 (км/с)/Мпк [66,93 ± 0,62 (км/с)/Мпк – данные 2016 года / прим. перев.] с погрешностью в 3-4 (км/с)/Мпк – зависит от того, как измерять.
Но отчего так происходит? Почему всё убегает друг от друга, если не имеет гравитационной связи? Вернёмся к основам ОТО, к тому самому откровению, которое испытал Эйнштейн перед публикацией своей наиболее мощной идеи.
Выдвинув свою ОТО, Эйнштейн быстро понял, что у неё имеется последствие, которое ему не нравится: Вселенная, повсеместно наполненная материей, была бы нестабильна и подвержена гравитационному коллапсу. Эйнштейн решил этот поправить, введя невидимую расталкивающую силу, предотвращавшую коллапс, космологическую константу. Другие поняли, что, если не учитывать эту константу, можно получить Вселенную, не статичную во времени – в ней сама ткань пространства будет расширяться или сжиматься.
Исправление Эйнштейна не работала. Космологическая константа приводила к нестабильной Вселенной: участки с повышенной плотностью должны были схлопнуться, а с пониженной – разбежаться. Во Вселенной, работающей по законам ОТО, не могло быть статичного пространства-времени, пока она заполнена материей. Наша Вселенная выглядит для нас гомогенной и изотропной. Важность двух этих свойств заключается в следующем:
Гомогенность означает, что Вселенная повсюду одинаковая.
Изотропность означает, что Вселенная одинакова по всем направлениям.
В комплексе они говорят о том, что Вселенной присуще равномерное распределение материи и энергии, во всех местах и направлениях. А раз так, и удалённые галактики убегают от нас тем быстрее, чем дальше находятся, у нас остаётся очень мало вариантов объяснения происходящего.
Эта ситуация могла развиться благодаря разным факторам, среди которых:
«Усталость» света, идущего от удалённых галактик, и потеря им энергии во время движения через пространство.
Быстрое движение, в результате которого самые быстрые из движущихся галактик оказались со временем самыми отдалёнными.
Первоначальный взрыв, расталкивающий галактики дальше от нас.
Расширение пространства-времени.
Но лишь последний вариант подтверждается полным набором данных, поддерживающих как ОТО, так и астрофизическое распределение и свойства всех наблюдаемых галактик
Довольно быстро стало понятно – ещё в 1930-х – что тут двух вариантов быть не может: Вселенная в самом деле расширяется. Это помог подтвердить тот факт, что красное смещение объекта очень хорошо совпадало с расчётным, полученным через расстояние, и с наблюдаемой скоростью расширения, вне зависимости от расстояния до объекта
Но тому есть ещё больше доказательств. Если бы Вселенная расширялась, можно было бы ожидать наблюдения ещё нескольких явлений. Мы бы увидели, что чем дальше заглядываем в удалённое прошлое, тем плотнее становится материя Вселенной. Мы бы увидели, что скопления галактик оказываются плотнее, чем сегодня. Мы бы увидели, что спектр света от объектов со свойствами абсолютно чёрного тела таким бы и оставался, и не испытывал сдвига в энергии. А ещё мы бы увидели, что температура реликтового излучения раньше была выше, чем сегодняшние 2,7 К.
Все эти свидетельства совместно учат нас тому, что Вселенная расширяется, и именно в этом причина красного смещения. Это не движение, не уставший свет, не результат взрыва. Само пространство расширяется, и та часть Вселенной, что мы можем видеть и изучать, со временем становится всё больше и больше. И хотя прошло всего 13,8 млрд лет с момента Большого взрыва, самые удалённые объекты, от которых до нас дошёл свет, сейчас удалены от нас уже на 46 млрд световых лет.
А что находится за этими пределами? Мы почти уверены, что там есть ещё больше «Вселенной», но свету оттуда просто не хватило времени, чтобы дойти до нас. Ненаблюдаемая Вселенная, расположенная за пределами наблюдаемой, может быть конечной или бесконечной; нам это просто неизвестно. Но даже если она уже бесконечная, она всё равно может расширяться! С расширением Вселенной мы просто умножаем её размер на множитель роста, поэтому если она изначально была конечной, она останется конечной (просто больше по размеру), а если она была бесконечной, она останется бесконечной. Мы уверены, что Вселенная меняется, расширяется и растягивается – и все эти эффекты непротиворечивы и неоспоримы. Но что находится за пределами наблюдаемой Вселенной? Мы работаем над тем, чтобы это выяснить. Как обычно, в науке есть ещё много того, что нужно сделать!
Источник: vk.cc/846t39